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On the assumption of (a) zero heah transfer, (b) unit Prandtl number, (c )  linear 
viscosity temperature relation, and (d) small cross-flow, a correlation between 
B compressible laminar boundary-layer flow and an incompressible flow with 
Werent external conditions is established. 

The correlation is applied to a known approximate method of solution for 
incompressible flow. For flow over a slender wing it is found that, so far as the 
effect on limiting streamlines-and hence on separation-is concerned, the 
fluid behaves as though it were incompressible but with pressure gradiente 
multiplied by 1 + i(y - 1) Mf approximately, where M, is the Mach number, 
supposed to be moderate in value. The effect on drag is also estimated. 

An attempt is made to assess the effect of variable Prandtl number Pr, and 
it is found that the above multiplying factor must be replaced by 

1 + ) P d ( y  - 1) M i ,  

but that variations in Prandtl number have little effect on the previous estimate 
of drag. 

1. Introduction 
Stewartson (1949) showed that if it is assumed in two-dimensional flow that 

(a) the surface is thermally insulating, (b) viscosity varies as the absolute tem- 
perature, and (c)  the Prandtl number is unity, it is possible to transform the 
co-ordinah so that the boundary-layer equations for a compressible fluid with 
a given main-stream velocity become identical with those for an incompressible 
5uid with a Merent  main-strectm velocity. The particular transformation used 
by Stewartson was also used by Illingworth (1949), and is closely allied to one 
due to Howarth (1948). 

In general three-dimensional flow it does not seem possible to find a trans- 
formation to correlate compressible and incompressible boundary layers in this 
way. However, there is one caae which is amenable, namely the m e  of small 
cross-flow which has been fairly extensively studied for incompressible fluids. 
Here it is assumed that the velocity in the boundary layer normal to the external 
streamlines and certain of its derivatives are small. A general discussion of this 
oase was given by Cooke ( 1 9 5 9 ~ )  who derived the equations of motion in a 
‘streamline’ co-ordinate system in which the co-ordinate curves were the 
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projections on to the surface of the external streamlines and their orthogonal 
trajectories in the surface. 

We show in this paper that the same transformation, simply extended, wil l  
correlate the compressible boundary layer associated with a given external flow 
with an incompressible boundary layer associated with a different external flow, 
in the caae where Stewartson's conditions (a), (a) and (c) hold, together with the 
small cross-flow condition. I n  the present state of knowledge the latter restriction 
does not trouble us unduly, since it is found in most approximate methods for 
incompressible flow. 

The correlation having been established, a study is made of the flow over a 
conically cambered delta wing for which an incompressible-flow calculation hae 
already been made. The effect is best seen by examining the angle B between 
streamlines and limiting streamlines aa shown in figure 1. This angle is consider- 
ably increased by compressibility, and this leads to a n  earlier separation. It 
will be found that a useful guide to  the effect on B is to assume the flow to be the 
same as it would be with incompressible fluid, but with all pressure gradienta 
multiplied by 1 + S(y - 1) M& where Mo is the Mach number. I n  the caae studied, 
Mo is equal to  2 and y equal to  1.4, so that this multiplier is equal to 1.8. 

An approximate allowance can be made for a Prandtl number Pr not equal 
to unity. A modified transformation, due to Rott (1953), is used. This causea 
minor modifioations all through; in particular it is found that the factor men- 
tioned above is changed to l+I~Pr*(y - l )Mg approximately, so that the 
multiplier 1-8 is reduced to 1-68 when No is equal to 2. The other effects of the 
change in Prandtl number are very small for moderate Mach numbers. 

2. The equations of motion 

relation 

where g is distance normal to the surface, while the curves 7 = const., [ = 0 
are the projections of the external streamlines on to the surface, and 6 = const., 
[ = 0 are their orthogonal trajectories. As usual, h, and h, are taken, to be in- 
dependent of [. u, v and ware velocity components in the co-ordinate directions. 

Cooke (1969a) wrote h, = r and let ds be the length element along the curve 
7 = const., 5 = 0; that is ds = h,dE. Assuming small cross-flow, Cooke obtained 
equations of motion which, when the thermd conductivity k was replaced by 
c,,u (for unit Prandtl number), became 

Taking streamline co-ordinates, we may define the length element dl by the 

d12 = hid52 + h;dT2 + dg2, (1) 

au, a 
p ( u-+w-  C g) =peue-+- as a[( p- g) , 



where 

We take the suffix e to denote values just outside the boundary layer, and the 
suffix 0 to denote values at some isentropic reference position. 

Stewartson (1949) used the relation 

PIP0 = TITO; 
but, following Chapman & Rubesin (1949), we may replace this by 

PIP0 = WIT, ) .  (6) 

In the special case of zero heat transfer and unit Prandtl number, a solution 
(Moore, 1951) of the energy equation is Crocco’s temperature relation 

where a, is the velocity of sound just outside the boundary layer. As v is small, 
we may neglect v2 in equation (7). 

3. The transformation 
Modifying Stewartson’s transformation slightly, we write 

We write also 

q =  l+t(Y-l)M:* (13) 

We omit the details of the analysis, which are given in the Appendix. It is 
shown there that equations (2) and (3) become 

(16) - ( r U ) + - ( r W )  = 0. 

These equations are the same in form as equations ( 2 ) ,  (3) and (5) ,  with p 
and p constant and vo = pip. The boundary conditions u = v = w = 0 when 
c =  0, and u = ue, v = 0 when c =  og become U = V = W = 0 when Z = 0 and 
V = V , ,  V=OwhenZ=og.  

a a 
a s  az where W satisfies 
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Thus we have reduced the compressible equations with smdl cross-flow to 
incompressible equations with small cross-flow, and there is a complete correh- 
tion. Note that, although the co-ordinates me changed, r is not changed. 

4. Arbitrary surface temperature 
Stewartson (1949) extended the u8e of his transformation to the case where 

the boundary condition on the surface is arbitrary. This does not yield a corre- 
lation, but the transformation greatly simplifies the equations. We include this 
w e  for completeness. 

Stewartaon wrote 

where A is the temperature function. Note that we must have A = 0 when 
= a; when 6 = 0, A is determined by the specified surface temperature Tw. 

Exactly aa in Stewartson's paper, this leads to 

in place of equation (14). 
Now, equation (17) may be written 

T 
- = B +  T " ~ A ,  
T, T, 

where B satisfies the energy equation (4), aa is clear from equation (7) with us 
neglected. It is now quite straightforwmd to show that A satisfim the equation 

aA aA a2A u- + w- = v -, as az oaz2 

with boundary conditions A = 0 when Z = co and A given by the specified 
surface temperature when Z = 0. 

Finally, equation (15) is changed to 

5. Application of incompressible approximate methods 

1967) and Cooke (1959b). In  these the length element is defined by 
We now apply the transformation procedure to the methods of Zartt (1950, 

and this we wi l l  now suppose to be transformed into 
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Since r ie unchanged in the transformation, we have 
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and so P = p(a,"/a;). 

We also note that K = p*&,/ag. 
The strwmwise length element is transformed by equation (9). Hence, when 

$ or Y are constant, we have 

dQ, 

% 

The transformation of K in equation (12) is used to find how $ is transformed. 
It leads to 

when # or Q, are constant. To verify this, we have, noting that q(aUe/aY) is 
given by equation (A 5) with B replaced by Y, 

This, by equation (12), is the right form for K, and thus the relation (21) is 
verified. 

We may therefore follow Zaat's or Cooke's methods using the new variables 
according to the above rules. We shall only go into details in connexion with the 
latter method. It is, however, just as easy to apply the transformation to Zmt's 
method. 

In the transformed (incompressible) flow, we shall denote all variables by 
capital letters, and shall call them 'transformed variables ', as distinct from 'true 
variables' in the compressible flow, which are denoted in general by the oorre- 
aponding small letters. 

Cooke's equations in transformed variables are 

where OZl = - (0.296 + 0*022A*) II* - (0.030 + 0*004A*) M*,  (24) 
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In these equations, II* is a boundary-layer velocity-profile pmmeter, B L 
a variable proportional to the square of the boundary-layer thickness, A* end 
M* are proportional to the streamwise and crosswise pressure gradients, and 
O,, is a mixed 'momentum thickness'. [In Cooke (19593) what we would hen, 
denote by A*, p*, n* were written A, M and II, and 021 had a different meaning, 
Nevertheless, the capital-letter notation is so convenient that we shall continue 
to use it. This should muse no confusion in practice.] 

Introducing true variables (except for C) and putting y = 1.4, we find by eque- 
tions (lo),  (19) and (20) that equation (22) becomes 

which thus determinea X/C as a function of the true co-ordinatea. 
Equations (26) and (26) become, using equations (lo), (19), (20) and (21) and 

putting y = 1.4, 

Thus, A* and M* are determined &B functions of the true co-ordinates, since 
X/C is known by equation (27). 

Equation (23) may be written 

and hence, with the aid of equation (24), II* and Oel can be found as functions 
of the true co-ordinates. The method of solution is exactly the same as that 
outlined by Cooke (19693). 

For the skin friction we have 

701 = p w  (g) ; 
0 

hence, using the relations 

TWIT, = PeIPw, ulue = UlV,, 
and the isentropic relations 

P J P O  = (ae/aoY, %/To = ( a e l d 2 ,  

we obtain, following Cooke (19693), 

We find in a similar way 
' 2  

702 = c p o A  (5) - (*n*+Jf*). 
(CV0)+ a0 3n4 2 

If is the angle between streamlines and limiting streamlines, we have 
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6. Effect of arbitrary Prandtl number 
Rott (1953) has suggested that, if the Prandtl number Pr is not unity, equation 

(7) m y  be replaced by 

(34) 

where F is the recovery factor, which is a function of Prandtl number only. For 
values of Q not too far from unity, the approximate vdue T = Pr) is usually 
taken. 

Equation (34) is exact for Pr = 1. When Pr =k 1, it  still satisfies the boundary 
conditions at the wall and at the edge of the boundary layer. Consequently, 
equation (34) is probably a reasonable approximate solution of the energy 
equation (4). 

Rott (1953) pointed out that in two dimensions a correlation can still be found 
by modifying Stewartson’s transformation. In  the present notation the new 
transformation is 

= @p&, 

u, = (a,/ae)Fue. 

This reducea to the earlier transformation when F = 1. 

in addition to the above changes, equation (12) and (13) are replaced by 
It is quite easy to show that the correlation in the V equation will still hold if, 

Q = 1 + - 1) N; + (1 - f )  ((ae/ao)Z - l}. (35) 

This cauaea minor modifications to the approximate equations of $ 5 .  These 
are given in table 1. We omit the details of the calculations. 

7. An example and discussion 
We consider the flow past the upper surface of a thin conically cambered delta 

wing with attached flow at the leading edges, as described by Brebner (1967). 
This wing (see figure 1) is flat inboard of the shoulders, which are straight lines 
through the apex, their equations in the notation of figure 1 being y / K x  = f 0.6. 
They are shown dotted in the figure. Outboard of the shoulders the wing is 
drooped in such a way as to make the downwash distribution parabolic. The 
design lift coefficient chosen is 0.1; this will be achieved at a certain angle of 
incidence which will give attached flow along the leading edges. The fact that the 
calculated separation line is y / K x  = 0.63 shows that the flow is unable to go 
right round the shoulder; hence, unless the flow quickly re-attaches after separ- 
ating, the boundary-layer solution and the external flow cannot match, since the 
external velocity components used in the solution were calculated on the basis 
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of unsepamted flow. Nevertheless, the example will still illustrate the method 
(even though the external flow used is not that over the wing specified) and will 
show the general effect of compressibility. 

FIQUBE 1. Angle between atreamlinea and limiting streamlines. Mach 2. 
0 S, pointa of eeparation. 

40" 

lo" - 

. '\ 

1 -.. s - 
1.0 09 0.8 .. 0.7 0 6  

YlKX 
FIQURE 2. Angle between limiting streemlines and rays. - , Compressible; 

---- , incompreeeible; 0 S, pointa of separation. 
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The boundary layer over this wing was the subject of an incompressible-flow 
dculation by Cooke (1959b). This has now been recalculated, using the same 
external flow but with Ho = 2, the suffix 0 referring to conditions at infinity. 
The flow is conical, so that calculations along one streamline are sufficient to 
determine the flow over the whole wing aa far as the separation line. 

FIQUBE 3. Limiting etreamlinea and 
separation linea. -, Compreseible; 

, incompreesible. 

6 

FIQURE 4. Angle between streamlines 
and limiting streemlinea. - , Full; 
---- , simplified. 

The effect of compreasibility is best seen by plotting the angle p between 
streamlines and limiting streamlines, as in figure 1. The effect is clearly seen to 
be an increaae in this angle at all positions. Figure 2 shows the angle between 
limiting stmmlinea and rays. Separation takes place when this angle vanishes. 
It is earlier than in the incompressible cme. In  figure 3 an attempt is made to 
draw part of a limiting streamline and a separation line for the two cams. 

It we are dealing with moderate h c h  numbers, such as M ,  = 2, the ratio 
ao/ae is not far from unity. If it were constantly equal to unity, then X/C, obtained 
from equation (27), would have the same value aa r calculakd on the assumption 
of incompressibility. A* and M* would then take their incompressible values 
multiplied by q, as can be seen from equations (28) and (29). Moreover, if we 
could &BBume ao/ae = 1 and A* not too large, we should find from equations (23) 
and (24) that II* would ale0 take its incompressible value multiplied by q. 
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Figures 4 and 5 shows curves for the compresaible caae marked 'full' and 'sim- 
plified'. The former are obtained by the full use of equations (27), (30), (31), 
(32) and (33). The latter are obtained from incompressible calculations followed 
by the multiplication of A*, M* and II* by q{ = 1 + +(? - 1) M;} and then by the 
use of equations (31), (32) and (33). It will be seen that the simplified method 
gives results of fair accuracy. Moreover, the simplified method shows that, M 

far as limiting streamline direction is concerned, compressible flow is like in- 
compressible flow with pressure gradients multiplied by 1 + +(? - 1) Hi, at any 
rate for moderate Mach numbers. This effect is large; for example the P W S S U ~ ~  

gradients would be doubled for M,, = Jb. 

FIQ- 6 

-0.8 

0.4 LO 0 9  0 8  0.7 

FIGURE 6 

FIGURE 5. Values of streamwise and crosswise skin friction, 701 and T ~ .  Compreesible, 
upper surface. - , Full; ----, simplified. (In the curve for 701, the results for the full 
and simplified methods are indistinguishable.) 

FIQURE 6. Ratios of compreasible to incompressible skin friction components. Upper 
surface. 

The effect of compressibility on drag comes mainly from the term (u,/u,,)~ in 
equation (31), while the factor q multiplying the pressure gradient has only 8 

small effect. Figure 6 shows that the streamwise shear stress T , , ~  is reduced, and 
that in this example one would expect the over-all drag of the upper surface of 
the wing to be about three-quarters of the incompressible value. The drag will, 
however, be increased over the lower surface. The crosswise shear stress T~~ on 
the upper surface is increased to nearly 1.5 times the incompressible value; 
this figure will be more than 2 over much of the lower surface. 
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"he values just given are for C = 1 and PT = 1. For an aeroplane flying in the 
etratosphere at Mach 2 with zero heat transfer, the value of C is about 0.89; on 
the other hand, C may have a value a little greater than unity under conditions 
experienced in a supersonic wind tunnel (Chapman & Rubesin 1949). These values 
wi l l  not affect the general nature of our conclusions. 

Replace 
- 

Index 0 
Index 3 
Index 11 
P 
Index 10 

Index 8 

Unchanged 
Unchanged 
- 
- 
- 

- 
- 

Unchanged 
- 

TABLE 1. Effect of non-unit Prandtl number 

The effect of Prandtl number may be roughly messed by consideration of the 
alterations made in Q 6. We take Pr = 0.72 and so F = 0.85. We have already seen 
that at moderate Mach numbers the ratio a&, is near to unity; indeed, figures 4 
and 5 show that the effect of putting this ratio equal to unity is very small. 
Hence the small changes in the powers to which aJa, is raised, as listed in table 1, 
will have little effect, and the main change will come from the change in q. 

Since F = 0.85 and u,/a, is near to 1, the last term in equation (35) is small, 
but the alteration in the second term may be significant. Thus, at M, = 2, q will 
change &om 1-80 to 1-68, so that the apparent increaae in pressure gradient due 
to compressibility is not quite so large as appeared for Pr = 1, and the risk of 
separation is reduced a little. 

It also follows from 5 6 that the change in Prandtl number has little effect on 
701 and so on the over-all drag, but that the crosswise skin fiction T~~ and the 
angle B are not as large as had previously been estimated. 

8. Conclusions 
It is possible in the caae of small cross-flow, unit Prandtl number and zero heat 

transfer to correlate a compressible three-dimensional laminar boundary layer 
with an incompressible three-dimensional laminar boundary layer. This makes 
it possible to make use of the approximate methods which have been developed 
for incompressible flow with small cross-flow. 

The general effect of compressibility at moderate Mach numbers on the 
directions of the limiting streamlines and so on separation is approximately the 
same as if the pressure gradients had been multiplied by 1 + $(y - 1) M i .  Alter- 
natively we may say that if in an incompressible flow the pressure gradients must 
be leas than a certain figure in order to avoid separation, this figure must be 
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divided by 1 + +(y - 1) Nt in order to avoid separation in compressible flow, 
Since for &, = 2 this factor is equal to 1-80, it can be seen that the effect may ln 
severe. 

Compressibility causes a reduced drag on the upper surface of a wing of the 
type considered here, but an increased drag on the lower surface. The crosswise 
skin friction is in general increased on both surfaces of the wing. 

The limitation to unit Prandtl number has only a small effect on the drag, but 
it  changes the factor 1 + i(y - 1) M i  given above to 1 + iPri(y - 1) M i ,  and this 
minimizes the severity of the apparent increase in pressure gradiente due to 
compressibility. For instance, it  reduces the factor 1.80 above to 1.68. 

Appendix 

Equation (6) shorn that there exists a stream function $ such that 
Detaib of the tramfomnation 

a$ a$ 
a5 as rpu = po-, rpw = -po-- .  

We first make the transformation 

the notation 
$(S, Z), and we note that a$/& b not the Bame &B a$/a8. 

being introduced to avoid confusion. $(8,5) transforms inta 

We have 

Denoting a$/aZ by $z, etc., we have 

using the relation (6) and the equation p = RpT. 
Hence, assuming &B usual that p is independent of 5 or Z, we obtain 

In  the external isentropic flow, we JSO have Bernoulli's equation 

since v, = 0 in the main stream. 

Hence aae awe a,- = -i(y-l)u,-. as as 
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Binoe the pmure in the boundary layer is constant at a given station, we have 

by equation (7), neglecting v2. 
Substituting in the equation of motion (2), we obtain 

If we use equations (10) and (A 3), we find 

2yKy-l) Further, if we note that - = @  23 7 

Po 

end also use (A 5) ,  we find that equation (A 4) becomes 

Finally, we write in this equation 

(A 6) 
1 1 

r 77 =;$z, w = --+s, 

thus satiefying an equation of the same form as (5 )  with constant p. We obtain 

au au av, azu u-+w-=ue-  as az as + " O W *  

The above procedure is almost identical with that of Stewartaon (1949). 
We now substitute in equation (3), writing 

v = 21, 
1 1 

q =  l+&y- l )M:= >{a:++(y- l )u:}  =-{u:++(y-1)u:} 
a0 a: 

by equetion (A 2). The reault i 

Ueing equations (12) and (A 6), we find 

av av uva?. azv u- + w- +- - = K ( C -  UZ) + v -. a 8  az r as 0 az2 

Note that, by equations (A 1) and (A 6), we have u = (a&,) U, so that when 
u = u, we have U = V, by equation (10). 
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